summaryrefslogtreecommitdiff
path: root/data/extensions/jsr@javascriptrestrictor/wrappingS-SENSOR-MAGNET.js
diff options
context:
space:
mode:
Diffstat (limited to 'data/extensions/jsr@javascriptrestrictor/wrappingS-SENSOR-MAGNET.js')
-rw-r--r--data/extensions/jsr@javascriptrestrictor/wrappingS-SENSOR-MAGNET.js552
1 files changed, 0 insertions, 552 deletions
diff --git a/data/extensions/jsr@javascriptrestrictor/wrappingS-SENSOR-MAGNET.js b/data/extensions/jsr@javascriptrestrictor/wrappingS-SENSOR-MAGNET.js
deleted file mode 100644
index c713834..0000000
--- a/data/extensions/jsr@javascriptrestrictor/wrappingS-SENSOR-MAGNET.js
+++ /dev/null
@@ -1,552 +0,0 @@
-/** \file
- * \brief Wrappers for the Magnetometer Sensor
- *
- * \see https://www.w3.org/TR/magnetometer/
- *
- * \author Copyright (C) 2021 Radek Hranicky
- *
- * \license SPDX-License-Identifier: GPL-3.0-or-later
- */
- //
- // This program is free software: you can redistribute it and/or modify
- // it under the terms of the GNU General Public License as published by
- // the Free Software Foundation, either version 3 of the License, or
- // (at your option) any later version.
- //
- // This program is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // You should have received a copy of the GNU General Public License
- // along with this program. If not, see <https://www.gnu.org/licenses/>.
- //
-
- /** \file
- * \ingroup wrappers
- *
- * MOTIVATION
- *
- * Magnetometer is a platform sensor available under the Generic Sensor API.
- * Magnetometer measures strength and direction of the magnetic field at device's
- * location. The interface offers sensor readings using three properties: x, y, and z.
- * Each returns a number that describes the magnetic field aroud the particular axis.
- * The numbers have a double precision and can be positive or negative, depending
- * on the orientation of the field. The total strength of the magnetic field (M)
- * can be calculated as M = sqrt(x^2 + z^2 + y^2). The unit is in microtesla (µT).
- *
- * The Earth's magnetic field ranges between approximately 25 and 65 µT. Concrete
- * values depend on location, altitude, weather, interference made by other electric.
- * devices, etc. While we consider it is unlikely that someone determines the precise
- * location of the device from the Mangetometer values, its data can be used for
- * fingerprinting. For instance, it can be determined wheter the device is moving or not.
- * In case of a stationary device, we can make a fingerprint from the device's orientation.
- * Another fingerprintable value is the average total strength of the field, which
- * should remain stable if the device is at the same position and in the same environment.
- *
- *
- * WRAPPING
- *
- * To protect the device, we are wrapping the x, y, z getters of the
- * `Magnetometer.prototype` object. Instead of using the original data, we use
- * artificially generated values that look like actual sensor readings.
- *
- * At every moment, our wrapper stores information about the previous reading. Each
- * rewrapped getter first checks the `timestamp` value of the sensor object. If there
- * is no difference from the previous reading's timestamp, the wrapper returns the
- * last measured value. Otherwise, it provides a new fake reading.
- *
- * We designed our fake field generator to fulfill the following properties:
- *
- * - The randomness of the generator should be high enough to prevent attackers from
- * deducing the sensor values.
- * - Multiple scripts from the same website that access readings with the same
- * timestamp must get the same results. And thus:
- * - The readings are deterministic - e.g., for a given website and time, we must
- * be able to say what values to return.
- *
- * For every "random" draw, we use the Mulberry32 sen_prng that is seeded with a value
- * generated from the `domainHash` which ensures deterministic behavior for the given
- * website. First, we choose the desired total strength `M` of the magnetic field at
- * our simulated location. This is a pseudo-random number from 25 to 60 uT, like on
- * the Earth.
- *
- * We support two variants of settings the initial axes orientaton:
- * - A pseudorandom draw (RANDOM_AXES_ORIENTATION = true) - the original implementation
- * - Calculation from the faked device rotation (shared by other wrappers) - improved version
- *
- * For both methods, the orientation is defined by a number from -1 to 1 for each axis:
- * `baseX`, `baseY`, and `baseZ`. By modifying the above-shown formula, we calculate
- * the `multiplier` that needs to be applied to the base values to get the desired field.
- * The calculation is done as follows:
- * - mult = (M * sqrt(baseX^2 + baseY^2 + baseZ^2) / (baseX^2 + baseY^2 + baseZ^2))
- * Now, we know that for axis `x`, the value should fluctuate around `baseX * mult`, etc.
- *
- * How much the field changes over time is specified by the fluctuation factor (0;1]
- * that can also be configured. For instance, 0.2 means that the magnetic field on
- * the axis may change from the base value by 20% in both positive and negative way.
- *
- * The fluctuation is simulated by using a series of **sine** functions for each axis.
- * Each sine has a unique amplitude, phase shift, and period. The number of sines per
- * axis is chosen pseudorandomly based on the wrapper settings. For initial experiments,
- * we used around 20 to 30 sines for each axis. The optimal configuration is in question.
- * More sines give less predictable results, but also increase the computing complexity
- * that could have a negative impact on the browser's performance.
- *
- * For the given timestamp `t`, we make the sum of all sine values at the point `x=t`.
- * The result is then shifted over the y-axis by adding `base[X|Y|Z] * multiplier` to
- * the sum. The initial configuration of the fake field generator was chosen intuitively
- * to resemble the results of the real measurements. Currently, the generator uses at
- * least one sine with the period around 100 us (with 10% tolerance), which seems to be
- * the minimum sampling rate obtainable using the API on mobile devices. Then, at least
- * one sine around 1 s, around 10 s, 1 minute, and 1 hour. When more than 5 sines are
- * used, the cycle repeats using `modulo 5` and creates a new sine with the period around
- * 100 us, but this time the tolerance is 20%. The same follows for seconds, tens of
- * seconds, minutes, hours. The tolerance grows every 5 sines. For 11+ sines, the tolerance
- * is 30% up to the maximum (currently 50%). The amplitude of each sine is chosen pseudo-
- * randomly based on the **fluctuation factor** described above. The phase shift of each
- * sine is also pseudo-random number from [0;2PI).
- *
- * Based on the results, this heuristic returns belivable values that look like actual
- * sensor readings. Nevertheless, the generator uses a series of constants, whose optimal
- * values should be a subject of future research and improvements. Perphaps, a correlation
- * analysis with real mesurements could help in the future.
- *
- *
- * POSSIBLE IMPROVEMENTS
- * Non-stationary devices can be supported if the baseX,Y,Z is updated with each movement.
- * Do more experiments in real environments and possibly update the reference magnetic field
- * vector, or the sine generator, e.g. by simulating temporary pseudorandom electromagnetic
- * interferences, etc.
- */
-
- /*
- * Create private namespace
- */
-(function() {
- /*
- * \brief Initialization of data for storing sensor readings
- */
- var init_data = `
- var currentReading = currentReading || {orig_x: null, orig_y: null, orig_z: null, timestamp: null,
- fake_x: null, fake_y: null, fake_z: null};
- var previousReading = previousReading || {orig_x: null, orig_y: null, orig_z: null, timestamp: null,
- fake_x: null, fake_y: null, fake_z: null};
- var emulateStationaryDevice = (typeof args === 'undefined') ? true : args[0];
- var debugMode = false;
-
- const TWOPI = 2 * Math.PI;
- `;
-
- /*
- * \brief Property getters of the original sensor object
- */
- var orig_getters = `
- var origGetX = Object.getOwnPropertyDescriptor(Magnetometer.prototype, "x").get;
- var origGetY = Object.getOwnPropertyDescriptor(Magnetometer.prototype, "y").get;
- var origGetZ = Object.getOwnPropertyDescriptor(Magnetometer.prototype, "z").get;
- var origGetTimestamp = Object.getOwnPropertyDescriptor(Sensor.prototype, "timestamp").get;
- `;
-
- /*
- * \brief Constructor of the sine configuration object
- */
- function SineCfg() {
- this.center = 0;
- this.amplitude = 1;
- this.shift = 0;
- this.period = 1;
- }
-
- /*
- * \brief Creates sine configurations based on the given settings
- *
- * \param Minimum number of sines
- * \param Maximum number of sines
- * \param Center 'y' value that the sine should spin around
- * \param Minimal fluctuation factor of a sine
- * \param Maximal fluctuation factor of a sine
- * \param Minimal period of a sine
- * \param Maximal period of a sine
- */
- function configureSines(cntMin, cntMax, center, flucMin, fluctMax, periodMin, periodMax) {
- // This is helping function for the field generator
- // Configures an array of sines for the given settings
-
- // How many sines we have?
- var cnt = Math.floor(sen_prng() * (cntMax - cntMin + 1) + cntMin);
-
- // max difference from base period
- const TOLERANCE_MAX = 0.5;
-
- // What is the typical amplitude for these sines?
- var sineAmplitude = center / cnt;
-
- var fluctMinMax = flucMin - fluctMax;
- let sines = [];
- let iteration = 0;
- let tolerance = 0.1;
-
- for (let i = 0; i < cnt; i++) {
- let s = new SineCfg();
- let fluctuationFactor = sen_prng() * (fluctMinMax) + fluctMax;
-
- s.center = center;
- s.amplitude = sineAmplitude * fluctuationFactor;
- s.shift = sen_prng() * TWOPI;
-
- let series = i % 5;
-
- switch(series) {
-
- case 0:
- iteration += 1;
-
- // increase tolerance for new iterations
- if (iteration > 1 && tolerance < TOLERANCE_MAX) {
- tolerance += 0.1;
- }
-
- // Minimal sampling rate (default: 100 miliseconds)
- s.period = sen_generateAround(periodMin, tolerance);
- break;
- case 1: // Seconds
- s.period = sen_generateAround(1000, tolerance);
- break;
- case 2: // Tens of seconds
- s.period = sen_generateAround(10000, tolerance);
- break;
- case 3: // Minutes
- s.period = sen_generateAround(60000, tolerance);
- break;
- case 4: // Hours
- s.period = sen_generateAround(3600000, tolerance);
- break;
- }
- sines.push(s);
- }
- return sines;
- }
-
- /*
- * \brief Fake magnetic field generator class
- * (Modify the constants below to change the generator's behavior.)
- */
- class FieldGenerator {
- constructor() {
- // Specifies, how much the values may (pseudorandomly) oscillate,
- // i.e., how much the may relatively differ from the chosen center value
- // in both positiva and negative way
- this.FLUCTUATION_MIN = 0.20;
- this.FLUCTUATION_MAX = 0.45;
- this.AXES_OSCILLATE_DIFFERENTLY = true;
-
- this.NUMBER_OF_SINES_MIN = 25;
- this.NUMBER_OF_SINES_MAX = 30;
-
- // Shifts the phase of each axis randomly [0, 2*PI)
- this.RANDOM_PHASE_SHIFT = true;
-
- // Minimum sampling rate of the device(s)
- // Motivation: It does not have sense to waste computing resources
- // by oscillating in periods smaller than this value
- this.MIN_SAMPLING_RATE = 100; // [ms]
-
- // Period configuration
- this.PERIOD_MIN = this.MIN_SAMPLING_RATE;
- this.PERIOD_MAX = 60000 // 1 minute
-
- // Defines whether the axes orientation is generated pseudorandomly
- // true = A PRNG is used to draw the orientation of x/y/z axes
- // false = orientation is calculated from the Earth's reference
- // coordinate system and the (faked) orientation of the
- // phone defined by the global rotation matrix (orient.rotMat)
- this.RANDOM_AXES_ORIENTATION = false;
-
- let m = generateBaseField();
-
- // Base of each axis
- var baseX = 0;
- var baseY = 0;
- var baseZ = 0;
-
- // Calculate the axes base
- if (this.RANDOM_AXES_ORIENTATION) {
- /*
- * Pseudorandom axes orientation
- *
- * The generateRandomAxisBase() is used to draw a number between
- * -1 and 1 for each axis base.
- */
- baseX = generateRandomAxisBase();
- baseY = generateRandomAxisBase();
- baseZ = generateRandomAxisBase();
- } else {
- /*
- * Calculation of axes orientation from the device's rotation
- *
- * The magnetic field vector is oriented towards the Earth's magnetic
- * north and towards the center of the earth.
- */
- let referenceMagVec = [0, 0.4, -0.6];
-
- /*
- * Actual field's strengths in all directions, based on the orientation:
- * (Tested on Samsung Galaxy S21 Ultra [And12] and Xiaomi Redmi 9 [And11])
- *
- * Legend:
- * -- ... highly negative
- * - ... negative
- * 0 ... zero
- * + ... positive
- * ++ ... highly positive
- *
- * +-------+-------+------+---+---+---+
- * | yaw | pitch | roll | x | y | z |
- * +-------+-------+------+---+---+---+
- * | 0 0 0 0 + -- |
- * | PI 0 0 0 - -- |
- * | PI/2 0 0 - 0 -- |
- * | -PI/2 0 0 + 0 -- |
- * +----------------------------------+
- */
-
- // The vector is rotated using the device's fake rotation matrix
- var deviceMagVec = multVectRot(referenceMagVec, orient.rotMat);
-
- if (debugMode) {
- }
-
- // The orientation is taken from the elements of the vector
- baseX = deviceMagVec[0];
- baseY = deviceMagVec[1];
- baseZ = deviceMagVec[2];
- }
-
- var baseX2 = Math.pow(baseX,2)
- var baseY2 = Math.pow(baseY,2)
- var baseZ2 = Math.pow(baseZ,2)
-
- // The total magnetic field strength is calculated as:
- // m = sqrt(x^2, y^2, z^2)
- // where x,y,z are strengs in individual directions (axes).
- //
- // For x,y,z, the algorithm generates a sine-based fluctuation around
- // a center value for each axis. For axis x, it is calculated as:
- // x = baseX * multiplier
- //
- // At this moment, we have calculate the basis (-1,1) for each axis.
- // Now, we calculate the multiplier:
- //
- // m + sqrt(baseX^2 + baseY^2 + baseZ^2)
- // multiplier = +/- -------------------------------------
- // baseX^2 + baseY^2 + baseZ^2
- //
- // Values at axis X will oscillate around: baseX * multiplier, etc.
-
- let mult = (m * Math.sqrt(baseX2 + baseY2 + baseZ2))
- / (baseX2 + baseY2 + baseZ2);
-
- this.baseField = m,
- this.multiplier = mult,
- this.x = {
- base: baseX,
- center: baseX * mult,
- sines: [],
- value: null
- };
- this.y = {
- base: baseY,
- center: baseY * mult,
- sines: [],
- value: null
- };
- this.z = {
- base: baseZ,
- center: baseZ * mult,
- sines: [],
- value: null
- };
-
- this.x.sines = configureSines(this.NUMBER_OF_SINES_MIN, this.NUMBER_OF_SINES_MAX, this.x.center,
- this.FLUCTUATION_MIN, this.FLUCTUATION_MAX, this.PERIOD_MIN, this.PERIOD_MAX);
- this.y.sines = configureSines(this.NUMBER_OF_SINES_MIN, this.NUMBER_OF_SINES_MAX, this.y.center,
- this.FLUCTUATION_MIN, this.FLUCTUATION_MAX, this.PERIOD_MIN, this.PERIOD_MAX);
- this.z.sines = configureSines(this.NUMBER_OF_SINES_MIN, this.NUMBER_OF_SINES_MAX, this.z.center,
- this.FLUCTUATION_MIN, this.FLUCTUATION_MAX, this.PERIOD_MIN, this.PERIOD_MAX);
- }
-
- // Updates the x/y/z values based on timestamp
- update(t) {
- // Simulate the magnetic field fluctuation based on settings
- // Center is added only once - we want to y-shift the result, not individial sines
- this.x.value = this.x.center + this.x.sines.reduce(function (val, s) {
- return val + (Math.sin(t * (TWOPI/s.period) + s.shift) * s.amplitude);
- }, 0);
- this.y.value = this.y.center + this.y.sines.reduce(function (val, s) {
- return val + (Math.sin(t * (TWOPI/s.period) + s.shift) * s.amplitude);
- }, 0);
- this.z.value = this.z.center + this.z.sines.reduce(function (val, s) {
- return val + (Math.sin(t * (TWOPI/s.period) + s.shift) * s.amplitude);
- }, 0);
- }
- }
-
- /*
- * \brief Pseudorandomly draws the desired total magnetic field around the device
- */
- function generateBaseField() {
- const FIELD_MIN = 25;
- const FIELD_MAX = 60;
- return sen_prng() * (FIELD_MIN - FIELD_MAX) + FIELD_MAX;
- }
-
- /*
- * \brief Pseudorandomly draws the orientation of X, Y, Z axes
- */
- function generateRandomAxisBase() {
- // Returns a number in (-1,1)
- var v = sen_prng(); // Random in [0,1)
- v *= Math.round(sen_prng()) ? 1 : -1; // 50% change for positive / negative
- return v;
- }
-
- /*
- * \brief Updates the stored (both real and fake) sensor readings
- * according to the data from the sensor object.
- *
- * \param The sensor object
- */
- function updateReadings(sensorObject) {
- // We need the original reading's timestamp to see if it differs
- // from the previous sample. If so, we need to update the faked x,y,z
- let previousTimestamp = previousReading.timestamp;
- let currentTimestamp = origGetTimestamp.call(sensorObject);
-
- if (debugMode) {
- // [!] Debug mode: overriding timestamp
- // This allows test suites to set a custom timestamp externally
- // by modifying the property of the Magnetometer object directly.
- currentTimestamp = sensorObject.timestamp;
- }
-
- if (currentTimestamp === previousTimestamp) {
- // No new reading, nothing to update
- return;
- }
-
- // Rotate the readings: previous <- current
- previousReading = JSON.parse(JSON.stringify(currentReading));
-
- // Update current reading
- // NOTE: Original values are also stored for possible future use
- // in improvements of the magnetic field generator
- currentReading.orig_x = origGetX.call(sensorObject);
- currentReading.orig_y = origGetY.call(sensorObject);
- currentReading.orig_z = origGetZ.call(sensorObject);
- currentReading.timestamp = currentTimestamp;
-
- fieldGenerator.update(currentTimestamp);
- currentReading.fake_x = fieldGenerator.x.value;
- currentReading.fake_y = fieldGenerator.y.value;
- currentReading.fake_z = fieldGenerator.z.value;
-
- if (debugMode) {
- }
- }
-
- /*
- * \brief Initializes the related generators
- */
- var generators = `
- // Initialize the field generator, if not initialized before
- var fieldGenerator = fieldGenerator || new FieldGenerator();
- `;
-
- var helping_functions = sensorapi_prng_functions + device_orientation_functions
- + SineCfg + configureSines + FieldGenerator
- + generateBaseField + generateRandomAxisBase + updateReadings;
- var hc = init_data + orig_getters + helping_functions + generators;
-
- var wrappers = [
- {
- parent_object: "Magnetometer.prototype",
- parent_object_property: "x",
- wrapped_objects: [],
- helping_code: hc,
- post_wrapping_code: [
- {
- code_type: "object_properties",
- parent_object: "Magnetometer.prototype",
- parent_object_property: "x",
- wrapped_objects: [],
- /** \brief replaces Sensor.prototype.x getter to return a faked value
- */
- wrapped_properties: [
- {
- property_name: "get",
- property_value: `
- function() {
- updateReadings(this);
- return currentReading.fake_x;
- }`,
- },
- ],
- }
- ],
- },
- {
- parent_object: "Magnetometer.prototype",
- parent_object_property: "y",
- wrapped_objects: [],
- helping_code: hc,
- post_wrapping_code: [
- {
- code_type: "object_properties",
- parent_object: "Magnetometer.prototype",
- parent_object_property: "y",
- wrapped_objects: [],
- /** \brief replaces Sensor.prototype.y getter to return a faked value
- */
- wrapped_properties: [
- {
- property_name: "get",
- property_value: `
- function() {
- updateReadings(this);
- return currentReading.fake_y;
- }`,
- },
- ],
- }
- ],
- },
- {
- parent_object: "Magnetometer.prototype",
- parent_object_property: "z",
- wrapped_objects: [],
- helping_code: hc,
- post_wrapping_code: [
- {
- code_type: "object_properties",
- parent_object: "Magnetometer.prototype",
- parent_object_property: "z",
- wrapped_objects: [],
- /** \brief replaces Sensor.prototype.z getter to return a faked value
- */
- wrapped_properties: [
- {
- property_name: "get",
- property_value: `
- function() {
- updateReadings(this);
- return currentReading.fake_z;
- }`,
- },
- ],
- }
- ],
- },
- ]
- add_wrappers(wrappers);
-})()