/** \file
* \brief Wrappers for arrays from the ECMA standard library
*
* \author Copyright (C) 2020 Peter Hornak
*
* \license SPDX-License-Identifier: GPL-3.0-or-later
*/
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//
/** \file
* \ingroup wrappers
*
* This wrapper aims on prevention of microarchitectural attacks like Meltdown and Spectre. This
* code was originally a part of [ChromeZero](https://github.com/IAIK/ChromeZero).
*
* \bug The `subarray()` method always ruturns the full array.
*
* The wrappers support the following behaviour:
*
* * Offset: The content of the buffer is shifted by a fix offset. This is a faster method but can
* be removed.
* * Random mapping: All items are mapped randomly. This is a slower method but more reliable.
*
* \see , especially Sect. 5.1
*/
/// \see This function was adopted from https://github.com/inexorabletash/polyfill/blob/master/typedarray.js under MIT licence.
function packIEEE754(v, ebits, fbits) {
var bias = (1 << (ebits - 1)) - 1;
function roundToEven(n) {
var w = Math.floor(n), f = n - w;
if (f < 0.5)
return w;
if (f > 0.5)
return w + 1;
return w % 2 ? w + 1 : w;
}
// Compute sign, exponent, fraction
var s, e, f;
if (v !== v) {
// NaN
// http://dev.w3.org/2006/webapi/WebIDL/#es-type-mapping
e = (1 << ebits) - 1;
f = Math.pow(2, fbits - 1);
s = 0;
} else if (v === Infinity || v === -Infinity) {
e = (1 << ebits) - 1;
f = 0;
s = (v < 0) ? 1 : 0;
} else if (v === 0) {
e = 0;
f = 0;
s = (1 / v === -Infinity) ? 1 : 0;
} else {
s = v < 0;
v = Math.abs(v);
if (v >= Math.pow(2, 1 - bias)) {
// Normalized
e = Math.min(Math.floor(Math.log(v) / Math.LN2), 1023);
var significand = v / Math.pow(2, e);
if (significand < 1) {
e -= 1;
significand *= 2;
}
if (significand >= 2) {
e += 1;
significand /= 2;
}
var d = Math.pow(2, fbits);
f = roundToEven(significand * d) - d;
e += bias;
if (f / d >= 1) {
e += 1;
f = 0;
}
if (e > 2 * bias) {
// Overflow
e = (1 << ebits) - 1;
f = 0;
}
} else {
// Denormalized
e = 0;
f = roundToEven(v / Math.pow(2, 1 - bias - fbits));
}
}
// Pack sign, exponent, fraction
var bits = [], i;
for (i = fbits; i; i -= 1) {
bits.push(f % 2 ? 1 : 0);
f = Math.floor(f / 2);
}
for (i = ebits; i; i -= 1) {
bits.push(e % 2 ? 1 : 0);
e = Math.floor(e / 2);
}
bits.push(s ? 1 : 0);
bits.reverse();
var str = bits.join('');
// Bits to bytes
var bytes = [];
while (str.length) {
bytes.unshift(parseInt(str.substring(0, 8), 2));
str = str.substring(8);
}
return bytes;
}
/// \see This function was adopted from https://github.com/inexorabletash/polyfill/blob/master/typedarray.js under MIT licence.
function unpackIEEE754(bytes, ebits, fbits) {
// Bytes to bits
var bits = [], i, j, b, str,
bias, s, e, f;
for (i = 0; i < bytes.length; ++i) {
b = bytes[i];
for (j = 8; j; j -= 1) {
bits.push(b % 2 ? 1 : 0);
b = b >> 1;
}
}
bits.reverse();
str = bits.join('');
// Unpack sign, exponent, fraction
bias = (1 << (ebits - 1)) - 1;
s = parseInt(str.substring(0, 1), 2) ? -1 : 1;
e = parseInt(str.substring(1, 1 + ebits), 2);
f = parseInt(str.substring(1 + ebits), 2);
// Produce number
if (e === (1 << ebits) - 1) {
return f !== 0 ? NaN : s * Infinity;
} else if (e > 0) {
// Normalized
return s * Math.pow(2, e - bias) * (1 + f / Math.pow(2, fbits));
} else if (f !== 0) {
// Denormalized
return s * Math.pow(2, -(bias - 1)) * (f / Math.pow(2, fbits));
} else {
return s < 0 ? -0 : 0;
}
}
/// \see Function was adopted from https://github.com/inexorabletash/polyfill/blob/master/typedarray.js under MIT licence.
function unpackF64(b) {
return unpackIEEE754(b, 11, 52);
}
/// \see Function was adopted from https://github.com/inexorabletash/polyfill/blob/master/typedarray.js under MIT licence.
function packF64(v) {
return packIEEE754(v, 11, 52);
}
/// \see Function was adopted from https://github.com/inexorabletash/polyfill/blob/master/typedarray.js under MIT licence.
function unpackF32(b) {
return unpackIEEE754(b, 8, 23);
}
/// \see Function was adopted from https://github.com/inexorabletash/polyfill/blob/master/typedarray.js under MIT licence.
function packF32(v) {
return packIEEE754(v, 8, 23);
}
function constructDecorator(wrapped) {
return function () {
const res = wrapped.apply(originalF, arguments);
return replacementF(res);
}
}
function offsetDecorator(wrapped, type, proxyRef, offsetF) {
return function () {
var ref = proxyRef;
let newArr = [];
// Create a copy of array
for (let i = 0; i < this.length; i++) {
newArr[i] = this[offsetF(i)]
}
// Shift to original
for (let i = 0; i < this.length; i++) {
this[i] = newArr[i];
}
// Do func
let res;
if (type === 3) {
res = new this.__proto__.constructor(this)[wrapped.name.split(' ')[1]]()
} else {
res = wrapped.apply(this, arguments);
}
// Create copy of new arr
let secArr = [];
for (let i = 0; i < this.length; i++) {
secArr[i] = this[i];
}
for (let i = 0; i < this.length; i++) {
this[offsetF(i)] = secArr[i];
}
switch (type) {
case 0:
return ref;
case 1:
return replacementF(res);
case 2:
return res;
default:
return res
}
}
}
function redefineNewArrayFunctions(target, offsetF) {
target['sort'] = offsetDecorator(target['sort'], 0, target, offsetF);
target['reverse'] = offsetDecorator(target['reverse'], 0, target, offsetF);
target['fill'] = offsetDecorator(target['fill'], 0, target, offsetF);
target['copyWithin'] = offsetDecorator(target['copyWithin'], 0, target, offsetF);
target['subarray'] = offsetDecorator(target['subarray'], 0, target, offsetF);
target['slice'] = offsetDecorator(target['slice'], 1, target, offsetF);
target['map'] = offsetDecorator(target['map'], 1, target, offsetF);
target['filter'] = offsetDecorator(target['filter'], 1, target, offsetF);
target['set'] = offsetDecorator(target['set'], 2, target, offsetF);
target['reduce'] = offsetDecorator(target['reduce'], 2, target, offsetF);
target['reduceRight'] = offsetDecorator(target['reduceRight'], 2, target, offsetF);
target['lastIndexOf'] = offsetDecorator(target['lastIndexOf'], 2, target, offsetF);
target['indexOf'] = offsetDecorator(target['indexOf'], 2, target, offsetF);
target['forEach'] = offsetDecorator(target['forEach'], 2, target, offsetF);
target['find'] = offsetDecorator(target['find'], 2, target, offsetF);
target['join'] = offsetDecorator(target['join'], 2, target, offsetF);
target['entries'] = offsetDecorator(target['entries'], 3, target, offsetF);
target['keys'] = offsetDecorator(target['keys'], 3, target, offsetF);
target['values'] = offsetDecorator(target['values'], 3, target, offsetF);
}
function redefineNewArrayConstructors(target) {
target['from'] = constructDecorator(originalF['from']);
target['of'] = constructDecorator(originalF['of']);
}
/// Default proxy handler for Typed Arrays
var proxyHandler = `{
get(target, key, receiver) {
var random_idx = Math.floor(Math.random() * target['length']);
// Load random index from array
var rand_val = target[random_idx];
/*
let proto_keys = ['buffer', 'byteLength', 'byteOffset', 'length'];
if (proto_keys.indexOf(key) >= 0) {
return target[key];
}
*/
// offsetF argument needs to be in array range
if (typeof key !== 'symbol' && Number(key) >= 0 && Number(key) < target.length) {
key = offsetF(key)
}
let value = target[key]
return typeof value == 'function' ? value.bind(target) : value;
},
set(target, key, value) {
var random_idx = Math.floor(Math.random() * (target['length']));
// Load random index from array
var rand_val = target[random_idx];
rand_val = rand_val;
if (typeof key !== 'symbol' && Number(key) >= 0 && Number(key) < target.length) {
key = offsetF(key)
}
return target[key] = value;
}
}`;
function getByteDecorator(wrapped, offsetF, name, doMapping) {
return function () {
const originalIdx = arguments[0];
const endian = arguments[1];
if (name === 'getUint8') {
// Random access
let ran = wrapped.apply(this, [Math.floor(Math.random() * (this.byteLength))]);
// Call original func
arguments[0] = offsetF(originalIdx);
return wrapped.apply(this, arguments);
}
if (!doMapping){
this.getUint8(0);
return wrapped.apply(this, arguments);
}
const byteNumber = (parseInt(name[name.length - 2] + name[name.length - 1]) || parseInt(name[name.length - 1])) / 8;
let res = 0;
let swapNumber = byteNumber - 1;
for (let i = 0; i < byteNumber; i++) {
if (endian) {
// Shift starting with 0,1,2
swapNumber = i * 2;
}
res += this.getUint8(originalIdx + i) << ((swapNumber - i) * 8);
}
return res;
}
}
function setByteDecorator(wrapped, offsetF, name, doMapping) {
function toNBitBin(n, bits) {
if (n < 0) {
n = 0xFFFFFFFF + n + 1;
}
function makeString(n) {
let s = "";
for (let i = 0; i < n; i++) {
s += "0";
}
return s;
}
return (makeString(bits) + parseInt(n, 10).toString(2)).substr(-bits);
}
return function () {
if (!doMapping){
this.getUint8(0);
return wrapped.apply(this, arguments);
}
const originalIdx = arguments[0];
const value = arguments[1];
const endian = arguments[2];
if (name === 'setUint8') {
// Random access
this.getUint8(0);
// Call original func
arguments[0] = offsetF(originalIdx);
return wrapped.apply(this, arguments);
}
const byteNumber = (parseInt(name[name.length - 2] + name[name.length - 1]) || parseInt(name[name.length - 1])) / 8;
const binNumber = toNBitBin(value, byteNumber * 8);
let numberPart;
for (let i = 0; i < byteNumber; i++) {
numberPart = binNumber.substr(i * 8, 8);
numberPart = parseInt(numberPart, 2);
if (endian) {
this.setUint8(originalIdx + byteNumber - i - 1, numberPart);
} else {
this.setUint8(originalIdx + i, numberPart);
}
}
return undefined;
}
}
function getFloatDecorator(wrapped, name, doMapping) {
return function () {
if (!doMapping){
this.getUint8(0);
return wrapped.apply(this, arguments);
}
const originalIdx = arguments[0];
if (originalIdx === undefined) {
wrapped.apply(this, arguments)
}
const endian = arguments[1];
const byteNumber = (parseInt(name[name.length - 2] + name[name.length - 1]) || parseInt(name[name.length - 1])) / 8;
let binArray = [];
// Random access
this.getUint8(0);
for (let i = 0; i < byteNumber; i++) {
binArray[binArray.length] = this.getUint8(originalIdx + i);
}
if (endian) {
binArray = binArray.reverse()
}
if (byteNumber === 4) {
return unpackF32(binArray);
} else {
return unpackF64(binArray);
}
}
}
function setFloatDecorator(wrapped, name, doMapping) {
return function () {
if (!doMapping){
this.getUint8(0);
return wrapped.apply(this, arguments);
}
const originalIdx = arguments[0];
const value = arguments[1];
if (originalIdx === undefined || value === undefined) {
wrapped.apply(this, arguments)
}
const endian = arguments[2];
const byteNumber = (parseInt(name[name.length - 2] + name[name.length - 1]) || parseInt(name[name.length - 1])) / 8;
let binArray;
// Random access
this.getUint8(0);
if (byteNumber === 4) {
binArray = packF32(value);
} else {
binArray = packF64(value);
}
for (let i = 0; i < binArray.length; i++) {
if (endian) {
this.setUint8(originalIdx + byteNumber - i - 1, binArray[i]);
} else {
this.setUint8(originalIdx + i, binArray[i]);
}
}
return undefined;
}
}
function getBigIntDecorator(wrapped, doMapping) {
return function () {
if (!doMapping){
this.getUint8(0);
return wrapped.apply(this, arguments);
}
const originalIdx = arguments[0];
if (originalIdx === undefined) {
wrapped.apply(this, arguments)
}
const endian = arguments[1];
let hex = [];
let binArray = [];
for (let i = 0; i < 8; i++) {
binArray[binArray.length] = this.getUint8(originalIdx + i);
}
if (endian) {
binArray = binArray.reverse();
}
for (let i of binArray) {
let h = i.toString(16);
if (h.length % 2) {
h = '0' + h;
}
hex.push(h);
}
let result = BigInt('0x' + hex.join(''));
if (binArray[0] >= 128) {
return result - 18446744073709551615n - 1n;
}
return result
}
}
function setBigIntDecorator(wrapped, doMapping) {
return function () {
if (!doMapping){
this.getUint8(0);
return wrapped.apply(this, arguments);
}
const originalIdx = arguments[0];
let value = arguments[1];
if (originalIdx === undefined || value === undefined || typeof value !== 'bigint') {
return wrapped.apply(this, arguments)
}
const endian = arguments[2];
if (value < 0n) {
value = 18446744073709551615n + value + 1n;
}
let hex = BigInt(value).toString(16);
if (hex.length % 2) {
hex = '0' + hex;
}
const len = hex.length / 2;
let binArray = [];
let j = 0;
// Random access
this.getUint8(0);
for (let i = 0; i < 8; i++) {
if (i < 8 - len) {
binArray[binArray.length] = 0;
} else {
binArray[binArray.length] = parseInt(hex.slice(j, j + 2), 16);
j += 2;
}
}
if (endian) {
binArray.reverse();
}
for (let i in binArray) {
this.setUint8(originalIdx + parseInt(i), binArray[i])
}
return undefined;
}
}
function redefineDataViewFunctions(target, offsetF, doMapping) {
// Replace functions working with Ints
var dataViewTypes = ['getInt8', 'getInt16', 'getInt32', 'getUint8', 'getUint16', 'getUint32'];
for (type of dataViewTypes) {
target[type] = getByteDecorator(target[type], offsetF, type, doMapping);
type = 's' + type.substr(1);
target[type] = setByteDecorator(target[type], offsetF, type, doMapping);
}
var dataViewTypes2 = ['getFloat32', 'getFloat64'];
for (type of dataViewTypes2) {
target[type] = getFloatDecorator(target[type], type, doMapping);
type = 's' + type.substr(1);
target[type] = setFloatDecorator(target[type], type, doMapping);
}
var dataViewTypes3 = ['getBigInt64', 'getBigUint64'];
for (type of dataViewTypes3) {
target[type] = getBigIntDecorator(target[type], doMapping);
type = 's' + type.substr(1);
target[type] = setBigIntDecorator(target[type], doMapping);
}
};
(function () {
var common_function_body = `
let _data;
if (typeof target === 'object' && target !== null) {
if (is_proxy in target){
// If already Proxied array is passed as arg return it
return target;
}
}
_data = new originalF(...arguments);
// No offset
var offsetF = function(x) {
return x;
};
if (doMapping) {
// Random numbers for offset function
let n = _data.length;
let a;
while (true){
a = Math.floor(Math.random() * 4096);
if (gcd(a,n) === 1){
break;
}
}
let b = Math.floor(Math.random() * 4096);
// Define function to calculate offset;
offsetF = function(x) {
if (x === undefined){
return x;
}
x = x < 0 ? n + x : x;
return (a*x + b) % n ;
};
let arr = []
for (let i = 0; i < _data.length; i++) {
arr[i] = _data[i];
}
for (let i = 0; i < _data.length; i++) {
_data[offsetF(i)] = arr[i];
}
}
var proxy = new newProxy(_data, ${proxyHandler});
// Proxy has to support all methods, original object supports.
${offsetDecorator};
${redefineNewArrayFunctions};
if (doMapping) {
// Methods have to work with offsets;
redefineNewArrayFunctions(proxy, offsetF);
}
// Preload array
let j;
for (let i = 0; i < _data['length']; i++) {
j = _data[i];
}
return proxy;
`;
var wrappers = [
{
parent_object: 'window',
parent_object_property: 'DataView',
original_function: 'window.DataView',
wrapped_objects: [],
wrapping_function_args: 'buffer, byteOffset, byteLength',
helping_code: packIEEE754 + unpackIEEE754 + packF32 + unpackF32 + packF64 + unpackF64 + `
function gcd(x, y) {
while(y) {
var t = y;
y = x % y;
x = t;
}
return x;
}
var doMapping = args[0];
`,
wrapping_function_body: `
let _data = new originalF(...arguments);
let n = _data.byteLength;
let a;
while (true){
a = Math.floor(Math.random() * 4096);
if (gcd(a,n) === 1){
break;
}
}
let b = Math.floor(Math.random() * 4096);
// Define function to calculate offset;
offsetF = function(x) {
if (x === undefined){
return x;
}
x = x < 0 ? n + x : x;
return (a*x + b) % n ;
};
${getByteDecorator}
${setByteDecorator}
${getFloatDecorator}
${setFloatDecorator}
${getBigIntDecorator}
${setBigIntDecorator}
${redefineDataViewFunctions}
for (let i = 0; i < n; i++) {
let random = _data.getUint8(i);
}
if (!doMapping){
offsetF = function(x) {
return x;
}
}
redefineDataViewFunctions(_data, offsetF, doMapping);
return _data;
`,
},
];
let DEFAULT_TYPED_ARRAY_WRAPPER = {
parent_object: 'window',
parent_object_property: '_PROPERTY_',
original_function: 'window._PROPERTY_',
wrapped_objects: [],
helping_code:`
let doMapping = args[0];
var proxyHandler = ${proxyHandler};
function gcd(x, y) {
while(y) {
var t = y;
y = x % y;
x = t;
}
return x;
}
const is_proxy = Symbol('is_proxy');
const originalProxy = Proxy;
var proxyHandler = {
has (target, key) {
return (is_proxy === key) || (key in target);
}
};
let newProxy = new originalProxy(originalProxy, {
construct(target, args) {
return new originalProxy(new target(...args), proxyHandler);
}
});
`,
wrapping_function_args: `target`,
wrapping_function_body: common_function_body,
post_replacement_code: `
${constructDecorator}
${redefineNewArrayConstructors}
redefineNewArrayConstructors(window._PROPERTY_);
`
};
var typedTypes = ['Uint8Array', 'Int8Array', 'Uint8ClampedArray', 'Int16Array', 'Uint16Array', 'Int32Array', 'Uint32Array', 'Float32Array', 'Float64Array', 'BigInt64Array', 'BigUint64Array'];
for (let p of typedTypes) {
let wrapper = {...DEFAULT_TYPED_ARRAY_WRAPPER};
wrapper.parent_object_property = wrapper.parent_object_property.replace('_PROPERTY_', p);
wrapper.original_function = wrapper.original_function.replace('_PROPERTY_', p);
wrapper.post_replacement_code = wrapper.post_replacement_code.split('_PROPERTY_').join(p);
wrapper.wrapping_function_body += `// ${p};`;
wrappers.push(wrapper);
}
add_wrappers(wrappers);
})();